

Eco-innovation: trends, barriers and drivers experience of EU and transition economies

Asel Doranova
Technopolis Group and Eco-Innovation Observatory

19 June 2013, Minsk

The Eco-Innovation Observatory

- Information platform and evidence on eco-innovation for business, policy and researchers
- Analysis of the current and future eco-innovation market and policy trends in Europe and beyond
- Funded by DG Environment of the European Commission
- Partners: Technopolis Group (leader), Wuppertal Institute,
 SERI, University of Turku C-Tech

EIO resources

- Reports and briefs
- •EU28 country profiles
- Database with on-line charts and maps
- Good practices
- Eco-innovation Scoreboard
- Eco-innovation glossary
- Surveys

Website: http://www.eco-innovation.eu

What is eco-innovation?

Eco-innovation is any innovation that reduces the use of natural resources (including materials, energy, water, biomass and land) and decreases the release of harmful substances across the whole life-cycle.

Economic dimension: innovation is a new or significantly modified solution <u>implemented</u> on the market or in the organisational practice

Eco-innovation is any **innovation** that reduces the use of natural resources and decreases the release of harmful substances across the whole life-cycle.

Eco-innovation is any innovation that reduces the use of natural resources (including materials, energy, water, biomass and land) and decreases the release of harmful substances across the whole life-cycle.

Environmental dimension:

Better (functional) use of natural resources and reduced emissions of harmful substances across the life-cycle.

Why do we need eco-innovations?

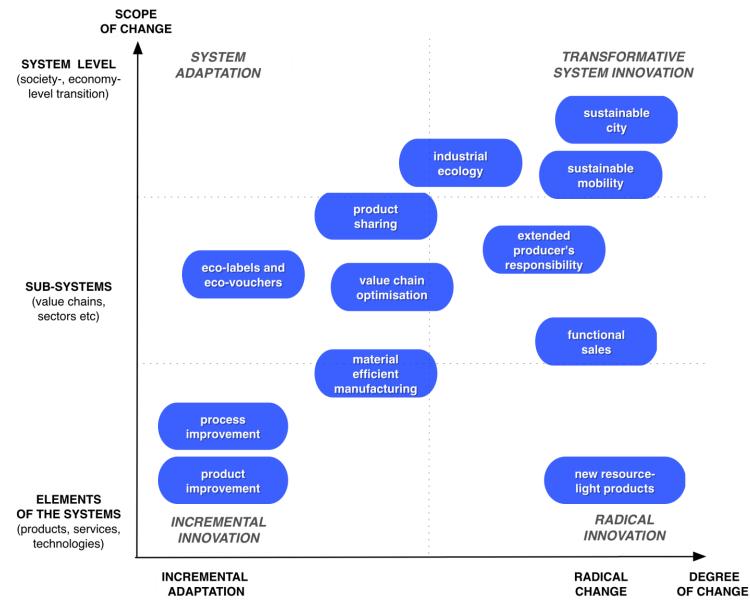
- Saving material and energy costs
- New products and services: new markets
- New business models
- Sustainable management of natural resources
- Tackling climate change
- Improving biodiversity and ecosystem services
- Enhanced quality of life
- New sustainable jobs
- Material security
- Resource independency

economy

environment

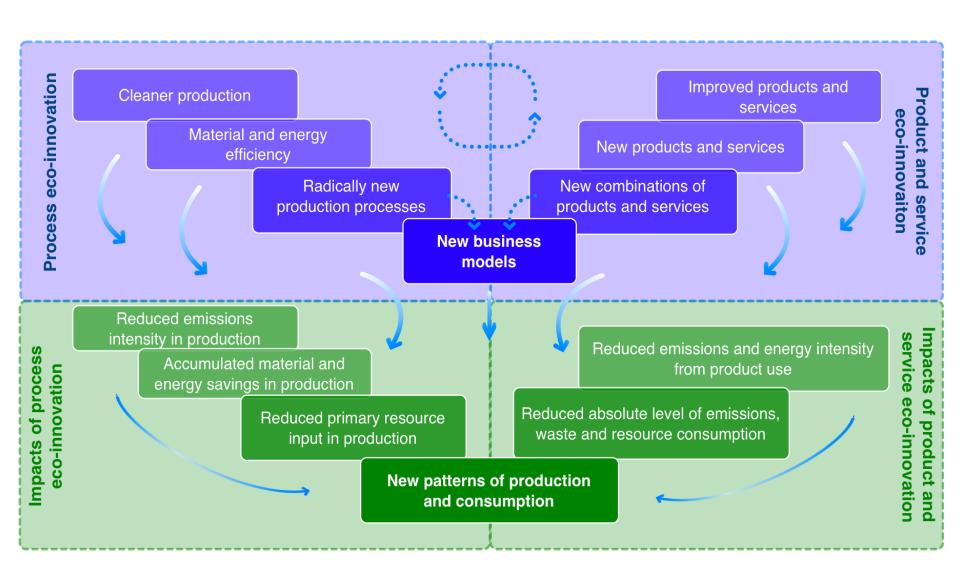
society

politics



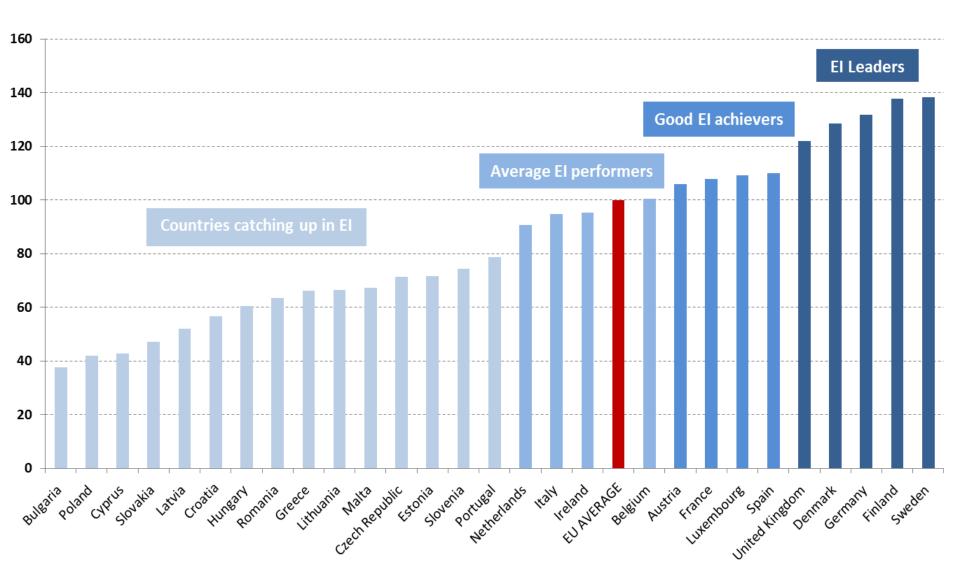
DEFRA (UK): £23bn could be saved in 2009 in the UK by making simple changes to use resources more efficiently. Savings opportunities with a payback greater than one year estimated at £33bn. This gives a total opportunity of around £55bn (Oakdene Hollins 2011)

NISP – National Industrial Symbiosis Programme (UK): €982m saved and €1027m in additional sales created in the period April 2005-March 2011; €9 in direct receipts for every €1 invested in NISP (NISP Economic Valuation Report, Manchester Economics 2011)


DEMEA (German Material Efficiency Agency) estimated about €200,000 of potential savings per company with an investment of under €10,000 in nearly half of the companies covered by the scheme (DEMEA 2010)

Source: EIO 2013

From incremental to systemic eco-innovation

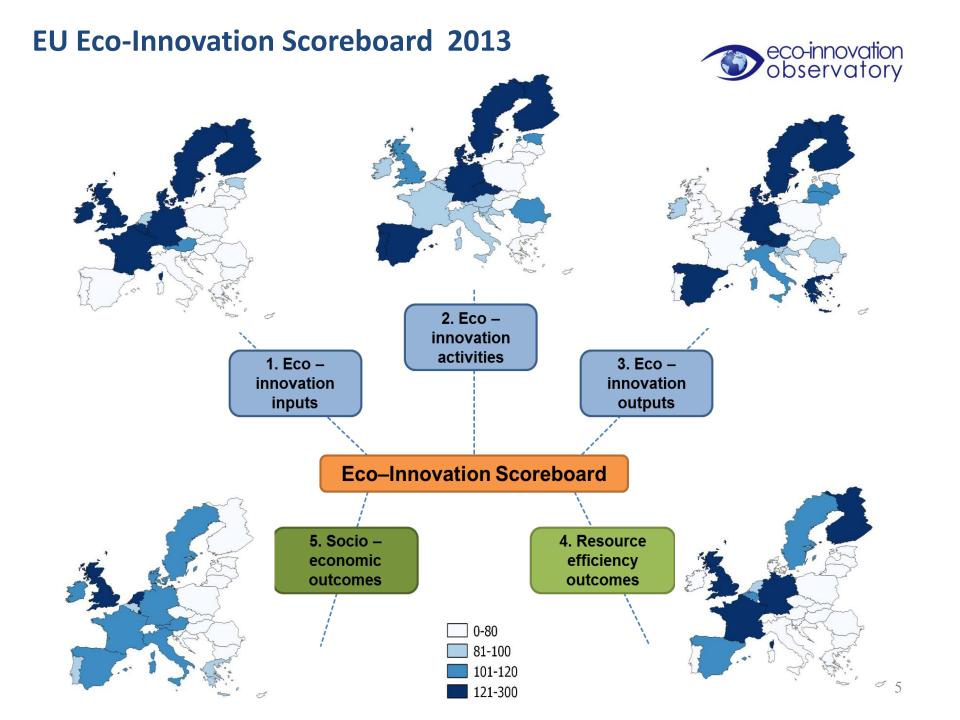


What are the eco-innovation trends?

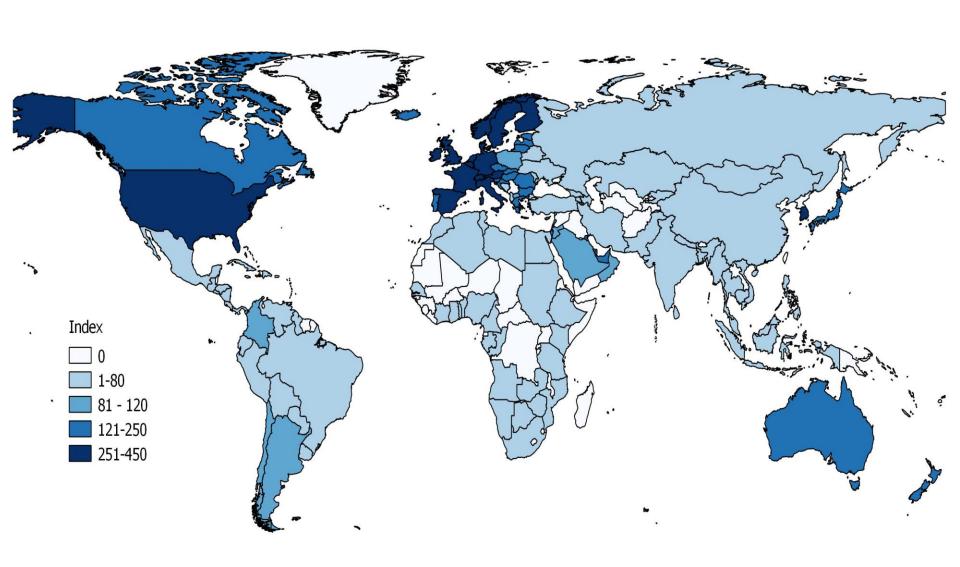
- ✓ Eco-innovation is on raise but still not in mainstream
 - Many adhoc examples of incremental eco-innovations (product, processes, technologies) but limited diffusion
 - Very few examples of high-impact systemic/transformative eco-innovations
 - The current eco-innovation performance falls short to reach the objective of <u>absolute decoupling</u> of environmental impacts from economic growth
- ✓ Measuring the eco-innovation trends is developing.
 - Methodologies are improving
 - But there are still challenges with data access and quality

EU Eco-Innovation Scoreboard 2013

Eco-Innovation Scoreboard

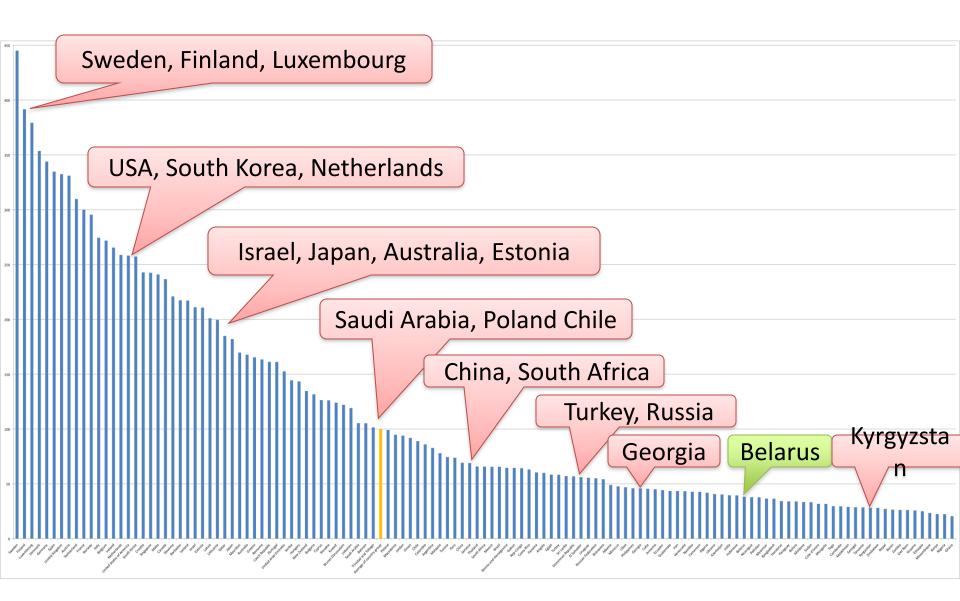

- 1. Eco innovation inputs
- 1.1. Governments environmental and energy R&D appropriations and outlays (% of GDP)
- 1.2. Total R&D personnel and researchers (% of total employment)
- 1.3. Total value of green early stage investments

- 2. Eco innovation activities
- 2.1. Firms having implemented innovation activities aiming at a reduction of material input per unit output (% of total firms)
- 2.2. Firms having implemented innovation activities aiming at a reduction of energy input per unit output (% of total firms)
- 2.3. ISO 14001 registered organisations (per mln population)

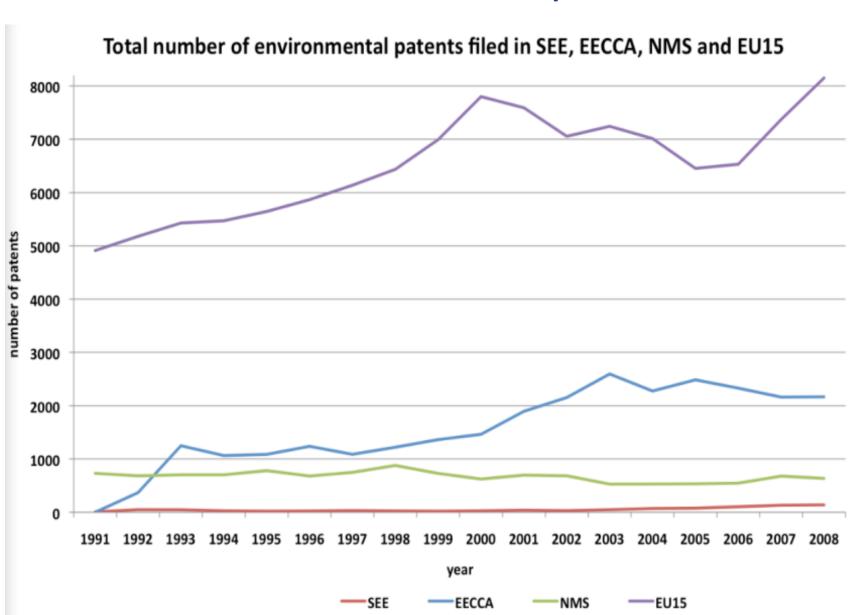

- 3. Eco innovation outputs
- 3.1. Ecoinnovation related patents (per mln population)
- 3.2. Ecoinnovation related academic publications (per mln population)
- 3.3. Ecoinnovation related media coverage (per numbers of electronic media)

- 4. Resource efficiency outcomes
- 4.1. Material productivity (GDP/Domestic Material Consumption)
- 4.2. Water productivity (GDP/Water Footprint)
- 4.3. Energy productivity (GDP/gross inland energy consumption)
- 4.4. GHG emissions intensity (CO2e/GDP)*

- 5. Socio economic outcomes
- 5.1. Exports of products from ecoindustries (% of total exports)
- 5.2. Employment in eco-industries and circular economy (% of total employment across all companies)
- 5.3. Revenue in eco-industries and circular economy (% of total revenue across all companies)

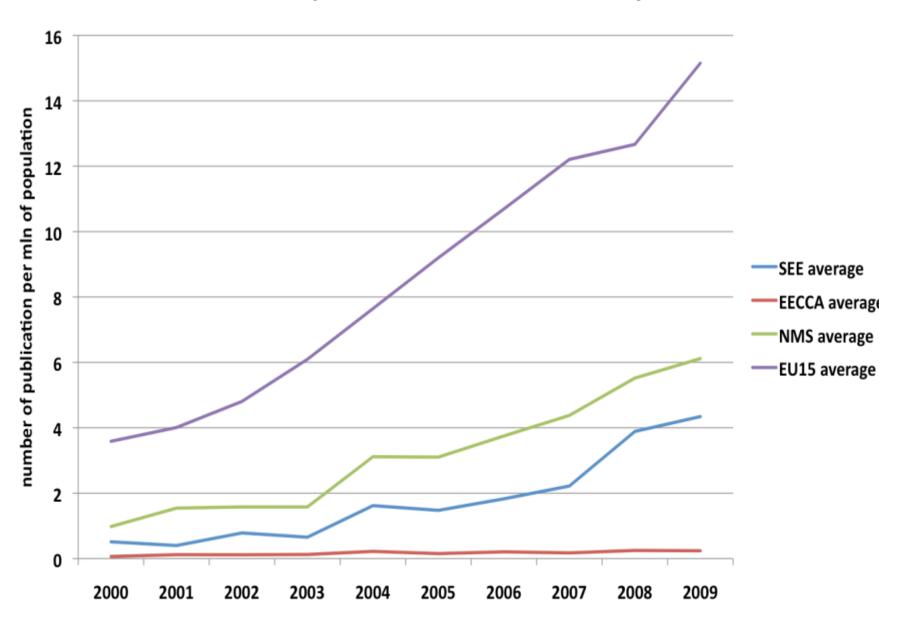


Global Eco-Innovation Scoreboard 2013



Global Eco-Innovation Scoreboard 2013 eco-innovation observatory

Total number of environmental patents filed

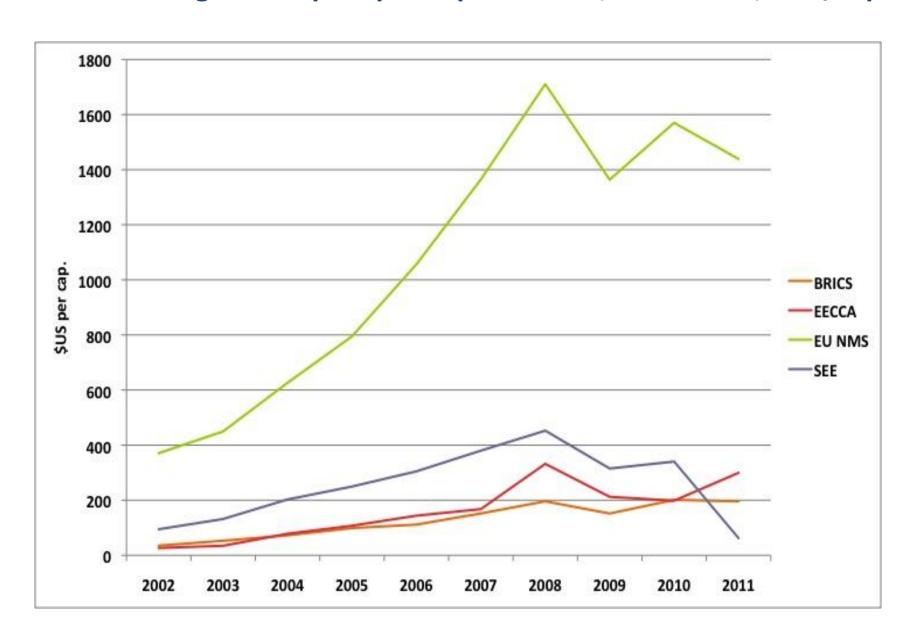


Environmental patents filed in 2012

	N of	N patents
	environmental	per mln
	patents	population
Germany	2114	25,8
USA	1643	5,3
South Korea	1005	20,2
France	655	10,0
China	359	0,3
Italy	241	4,0
United Kingdom	224	3,6
Japan	211	1,7
Denmark	172	30,9
Sweden	131	13,8
Spain	129	2,8
Austria	90	10,6
Finland	77	14,3
Switzerland	75	9,5
Canada	63	1,8
Netherlands	57	3,4
India	44	0,0
Belgium	35	3,1
Norway	31	6,2
Hungary	26	2,6
Russian Federation	19	0,1
Israel	18	2,3
Poland	17	0,4

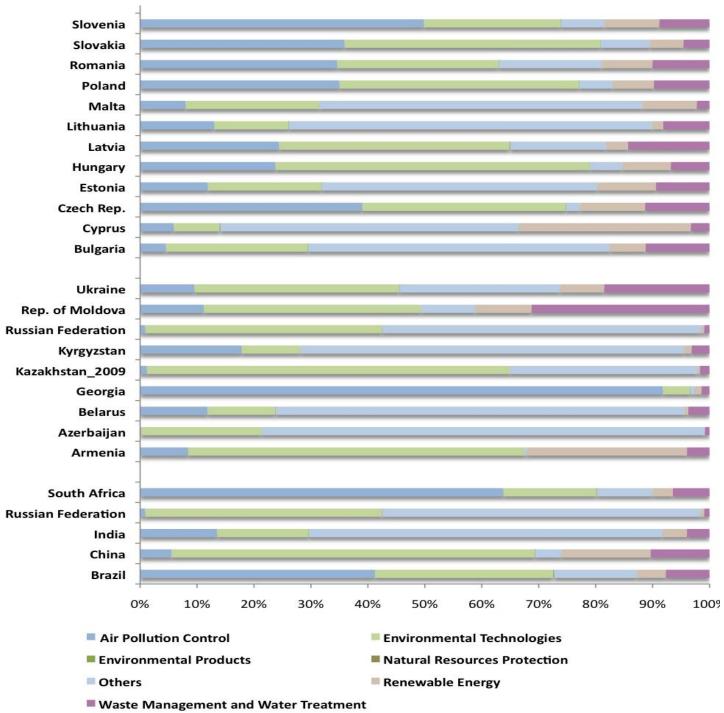
	N of	N patents
	environmental patents	per mln population
Czech Republic	13	1,2
Brazil	13	0,1
Australia	11	0,5
Greece	10	0,9
Luxembourg	8	15,9
Portugal	8	0,8
Ireland	8	1,7
Slovenia	5	2,4
Slovakia	4	0,7
Romania	3	0,2
Croatia	3	0,7
New Zealand	2	0,4
Bulgaria	2	0,3
Estonia	1	1,0
Lithuania	1	0,3
Ukraine	1	0,0
Armenia	0	0,0
Azerbaijan	0	0,0
Belarus	0	0,0
Georgia	0	0,0
Kazakhstan	0	0,0
Kyrgyzstan	0	0,0
Latvia	0	0,0
Moldova	0	0,0

Environmental publications in scientific journals


	Number of ISO	Data per min
EU 28	14001 certificates,	population,
	2012	2012
Austria	1084	0,13
Belgium	1026	0,09
Bulgaria	1395	0,19
Croatia	760	0,18
Cyprus	32	0,03
Czech Republic	4215	0,40
Denmark	1756	0,31
Estonia	394	0,29
Finland	1310	0,24
France	7975	0,12
Germany	7034	0,09
Greece	657	0,06
Hungary	1718	0,17
Ireland	417	0,09
Italy	19705	0,32
Latvia	237	0,12
Lithuania	680	0,23
Luxembourg	51	0,10
Malta	23	0,05
Netherlands	2085	0,12
Poland	2014	0,05
Portugal	1184	0,11
Romania	8633	0,40
Slovakia	1426	0,26
Slovenia	420	0,20
Spain	19470	0,42
Sweden	3885	0,41
United Kingdom	15884	0,25

ISO 14001 certification

EECCA	Number of ISO 14001 certificates, 2012	Data per <u>mln</u> population, 2012
Armenia	4	0,00
Azerbaijan	56	0,01
Belarus	29	0,00
Georgia	4	0,00
Kazakhstan	122	0,01
Kyrgyzstan	1	0,00
Moldova	7	0,00
Ukraine	166	0,00


BRICS	Number of ISO 14001 certificates, 2012	Data per min population, 2012
Brazil	3300	0,02
China	91590	0,07
India	4263	0,00
Russian Federation	1090	0,01
South Africa	938	0,02

Environmental goods export per capita trends, 2002-2011, US\$/cap

	<i>†</i>	2010	Environmental goods Export,		
	Final goods	Intermediate goods			s Export,
Brazil	5,949.1	10,726.6	N	MIn USD	
China	258,063.5	117,380.8	l		
India	6,492.5	47,373.3	1	•	2010
Russia	2,745.5	121,345.1	1	Final	Intermediate
South Africa	4,681.3	3,466.4	1	goods	goods
BRICS Total	277,931.8	300,292.2	Bulgaria	935.7	3,193.7
	2	2010	Cyprus	45.3	352.8
	Final	Intermediate	Czech Rep.	14,639	11,376.5
	goods	goods	Estonia	854.9	2,198.7
Armenia	8.6	26.6	Hungary	13,536.4	7,776.1
Azerbaijan	7.9	1,641.5	Latvia	521.7	499.1
Belarus	1,865.8	7,525.5	Lithuania	1,127.2	5,315.5
Georgia	31.4	9.3	Malta	83.7	242.6
Kazakhstan	n.a	n.a	Poland	15,838.3	11,381.3
Kyrgyzstan	18.6	69.9	Romania	3,061.1	5,773.6
Rep. of Moldova	34.7	24.9	Slovakia	11,653.5	7,263.9
Ukraine	1,971.5	5,597.1	Slovenia	1,401.8	2,446.3
EECCA Total	3,938.5	14,894.6	EU NMS Total	63,698.7	57,820.3

Specialisation in Environment Goods Export, 2010

Eco-innovation needs and challenges in emerging countries

- ✓ Population growth and increasing resource scarcity including land, water, food, as well as nature degradation
- ✓ Climate change, through its effects on water, is threatening agriculture, and disaster prone areas
- ✓ Increasing industrialisation and urbanisation which puts increasing pressure on environment
- ✓ Growing middle class following western consumption style
- ✓ Increasing awareness of government in greening their economies, adoption of targets, and strengthening environmental regulation
- Emerging demand for green products and services

Barriers to eco-innovation in emerging countries

	Lack of investments and access to financial tools
	Lack of governmental economic incentives
Economic	Lack or limited access to IPR
barriers	Lack of consumer demand for eco-innovative products & services
	Failure of markets to capture economic and environmental benefits
	Trade barriers
	Lack of adequate institutional policies
Institutional barriers	Lack of effective public-private partnership for eco-innovative markets
	Inefficient administrations and regulations (e.g. custom), corruption
Technological	Lack of adequate infrastructure
& knowledge-	Lack of access to skilled human resources
base barriers	Lack of technologies tailored to the region's needs
0.1	Stagnant business mentality of local actors
Other barriers	Perception of high risks linked to eco-innovation business
barriers	Cultural barriers facing newcomers in developing countries markets

Drivers of eco-innovation in emerging markets

Economic drivers	Reduction of production costs & dependency on traditional energy sources
	Enhance access to international market segments
	Establishing key partnerships with international companies
	Creating a demand for so-called "green jobs"
Technical drivers	Technological leapfrogging
	Increase compliance with environmental regulations
	Creation of and skilled labour force
Organisational	Improve brand reputation
drivers	Increase competitive market advantage over competitors
Other drivers	Improve living conditions of local communities

Market

Better Dissemination

- Process innovation
- Monitoring and certification
- Qualification and training
- Efficiency agency, international network thereof
- Benchmarks and performance targets

Encouraging Product Innovation

- · Eco-Design
- Top Runner market introduction
- Supply chain management
- Light-weight key products (e.g cars)
- Standards and technologyenhancing targets
- Better access to financing (VC)

Radical and System Innovation

- Establish materials stewardship
- Technology Platforms, e.g. resource-efficient construction
- Sustainable infrastructures
- Long-term, sectoral and aggregated targets
- New financing mechanisms
- Economic incentives

International Governance of Resources

- Support for recycling in DCs
- International Metals
 Covenant
- International agreement on SRM
- Bilateral partnerships
- International targets

Information deficits

Coordination and adaptation deficits = system failures

Collective goods and negative externalities Thank you!