

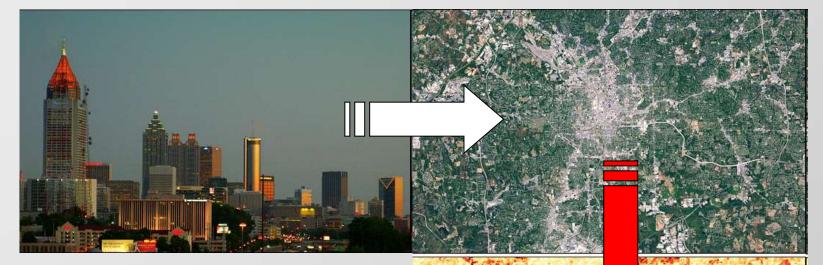
Energy technology networks for smart cities

ENER2I Project

ener2i Training Workshop

Minsk, 15 October 2013

Michael Narodoslawsky, Graz University of Technology eseia Secretariat


What you can expect

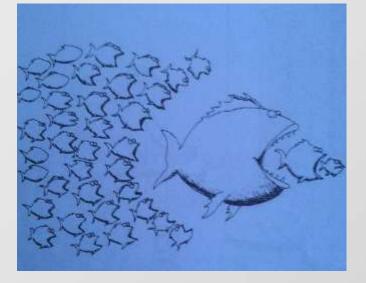
- Smart cities, smart regions, smart what?
- Methods to optimize energy systems for cities and regions Integration of industry and smart cities
- Case studies
 - Integrating industry in smart cities
 - Creating a smart city quarter
- Institutional setting for smart city projects

2

The Smart City Challenge

- Cities are "hot"
- Cities emit CO₂

Consequence:

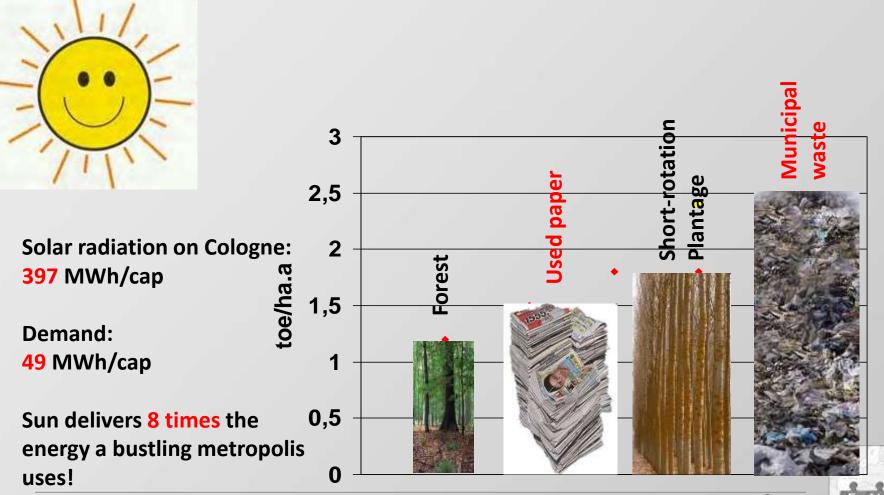

Do away with cities??

Opt for Regions?

They offer land to capture "natural income"

They are the next step after "big is beautiful"

The truth: Cities are our future...


- Cities are the living space uman population of modern society
- Changing the energy system needs cities

L850

2000

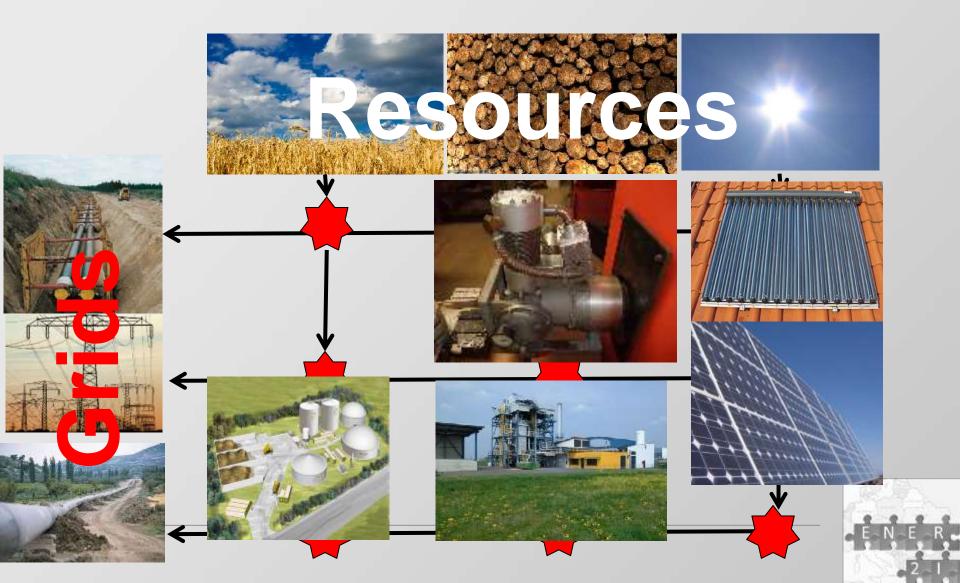
...and they still have hidden resources...

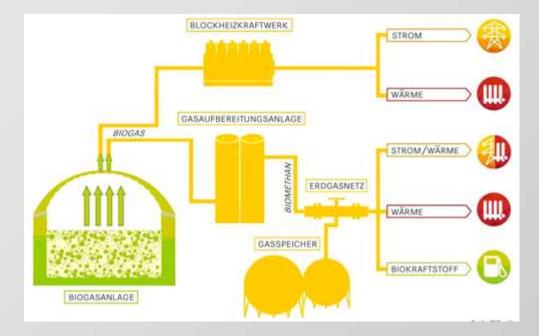
6

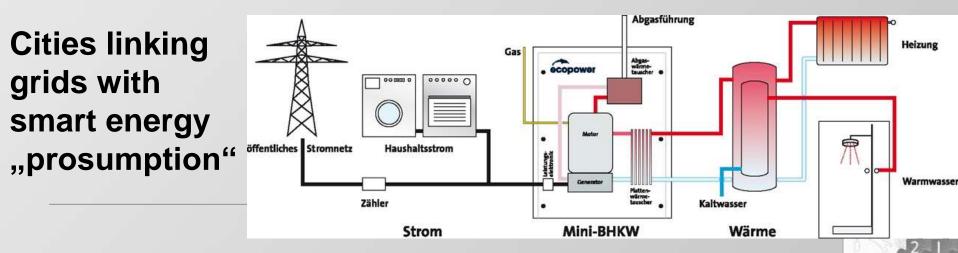
...but they will inherently ...

...to offer jobs and opportunities

7


...need resources and create waste...

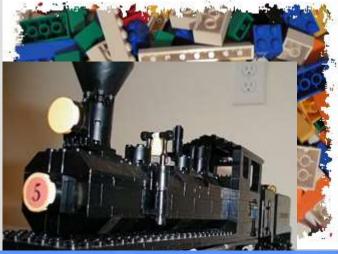

Regions have these resources!


They must become active links between resources and grids

We need Smart Systems

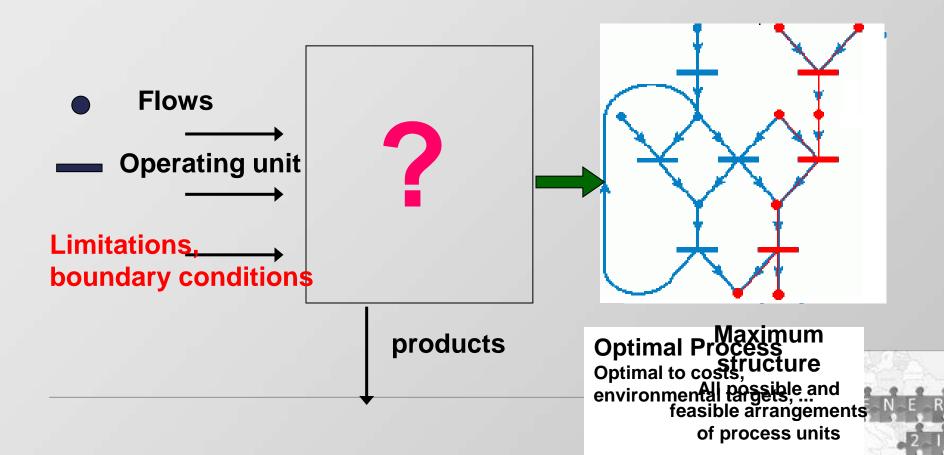
Regions linking grids with smart energy provision

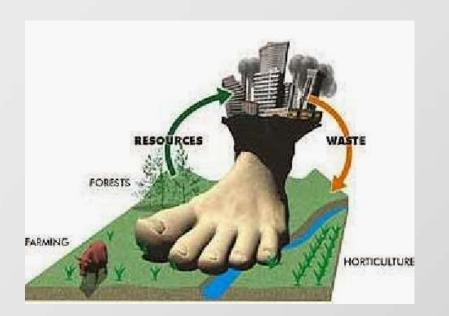
The Challenge: Planning Sustainable Energy Networks


2013 CAPE Forum April 07-10, 2013, Graz, Austria

First step: build credible scenarios

• Starting with building blocks...


 … create comprehensive scenarios…


... that help
 stakeholders in
 their decisions!

Using Process Network Synthesis to generate technology networks

Evaluating ecological impact with the Sustainable Process Index (SPI)

- "Advanced" ecological footprint
- Compares full life cycles
- Includes infrastructures
- Is sensitive to different energy systems

13

• Can compare efficiency and provision alternatives

Free software available

- PNS:
 - PNS-Studio: <u>http://www.p-graph.com/pnsstudio/</u> General PNS program
 - RegiOpt: <u>http://www.fussabdrucksrechner.at/en</u> Calculation of regional/local technology networks
- SPI:
 - SPIonWEB: <u>http://spionweb.tugraz.at/</u> General ecological evaluation program
 - ELAS Calculator: <u>http://www.elas-calculator.eu/</u> Ecological evaluation of settlements

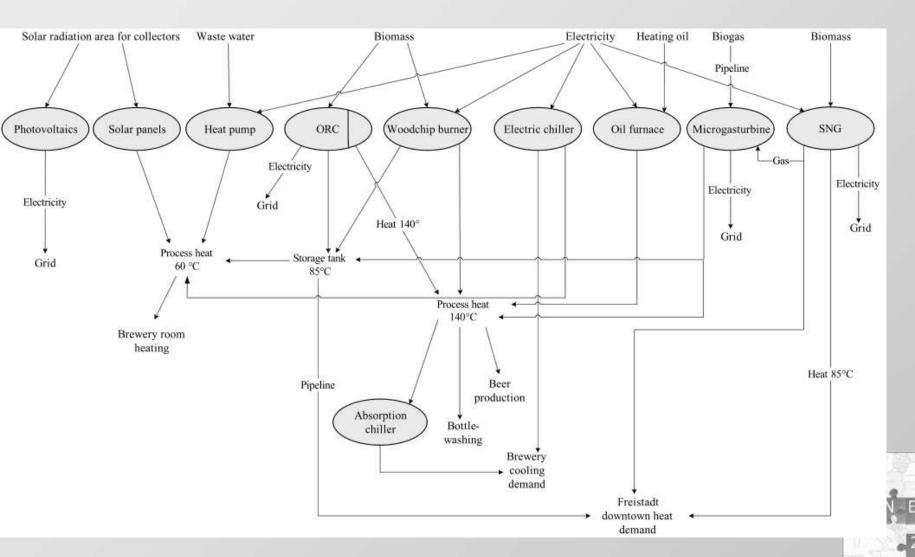
14

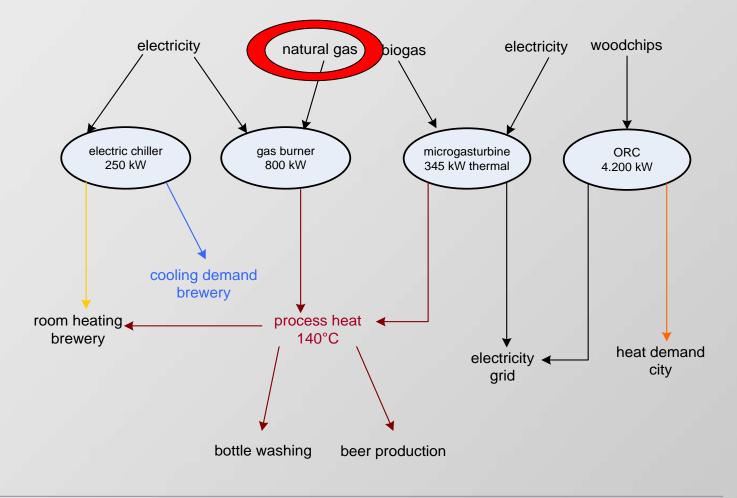
The Freistadt-case: a brewery supplies beer and heat

The contextual framework

- Brewery:
 - Refurbishing key elements of the brewery energy system is inevitable
 - Future energy system has to accommodate increased demand
- City:
 - Strong cultural preservation restrictions on buildings
 - Brewery is owned by citizens (Braucommune)
 - 11,200 MWh/a currently supplied by natural gas; 2,600 MWh/a supplied by individual heating systems (fossil oil)

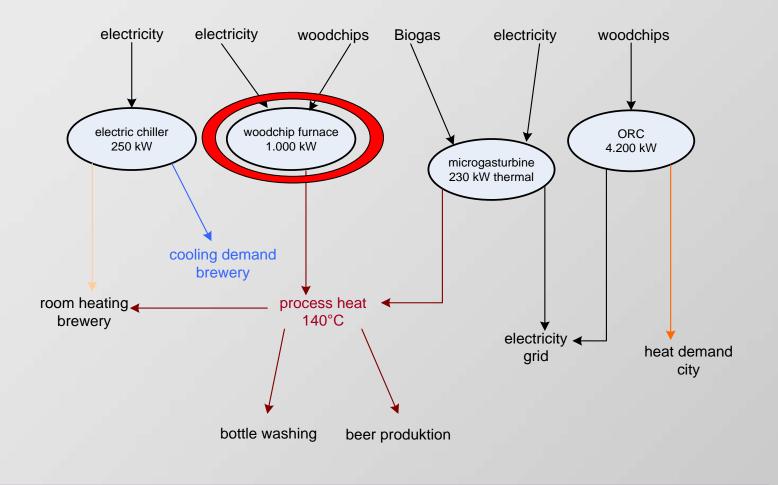
The crucial questions


- What optimal technology network meets future demands of brewery and city?
- What are the costs and benefits for this structure in economic and ecological terms?
- What "costs" are incurred by "going green"?


Planning framework

- Heat MUST be produced and used fully by the technology network
- Renewable resources shall preferable come from the region (using the surplus biogas as well as wood); direct solar energy is restricted to brewery roofs
- Heat supply must follow time lines of brewery and city
- Electricity is completely sold to the grid (using actual feed-in tariffs)
- Additional investment in apparatus is depreciated over 10 years, long term infrastructure (distribution grids) is depreciated over 30 years.

The maximum structure



The "optimal" optimum structure

ENER 2 I

The "green" optimal structure

A major challenge: following load profiles

Comparing the new scenarios

Scenario	SPI [km²]	CO ₂ Savings potential [%]	Costs during the payout period [€/yr]	Profit after the payout period [€/yr]
Optimum structure with gas burner	535,9	69,78	755.357	22.271
Optimum structure without fossil energy resources	503,7	73,32	781.471	35.157

Conclusion

• The environment:

• Linking industry and cities offers a possibility to increase environmental efficiency of energy provision considerably

• The economy:

- It makes long term economical sense
- Going entirely "green" leads to short term disadvantage but long term profit

• The challenges:

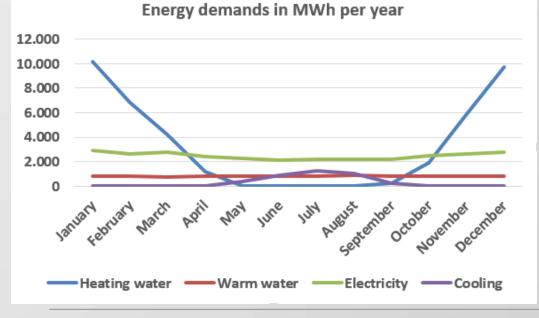
- Methodological: matching time profiles with technologies
- Implementation: finding the right business model and dispel industry resistance to increased responsibility

City District Graz-Reininghaus

Baseline data:

- Project area 110 ha
- Full capacity 12.000 inhabitants
- max. 560 000m² net floor area
- ~ 50 GWh heat demand (demand for warm water and heating) per year
- ~ 30 GWh electricity demand per year

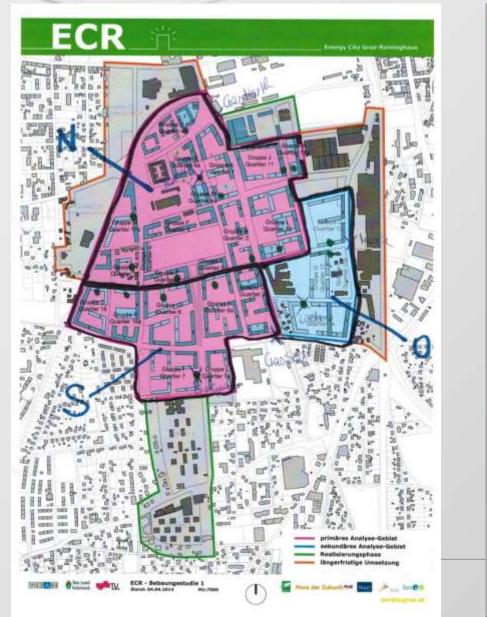
Active house standard

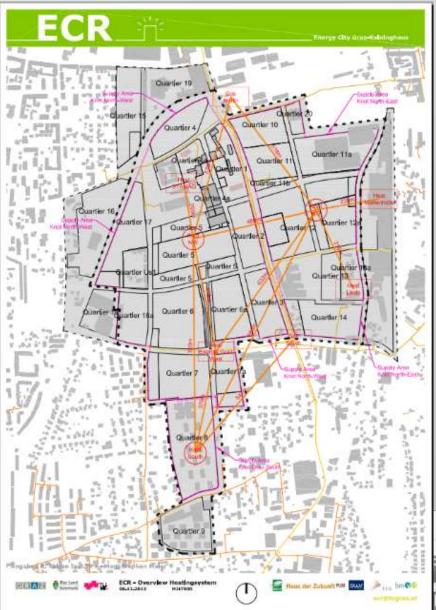


Process-Network-Synthesis

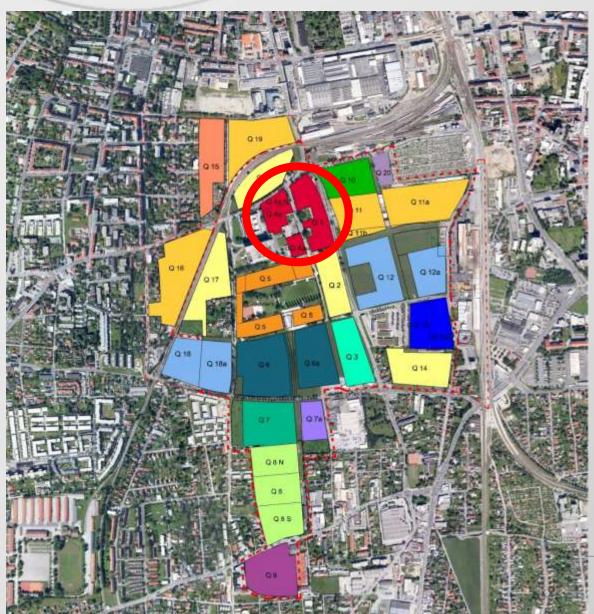
Taking different load situations into account

Periods


Period	Months	Hours	Hours in %
Winter	January, February, November, December	2.880	32,9%
Midterm	March, April, September, October	2.928	33,4%
Summer	May, June, July, August	2.952	33,7%
Total year		8.760	100%



Energy demand low energy buildings (for all quarters)

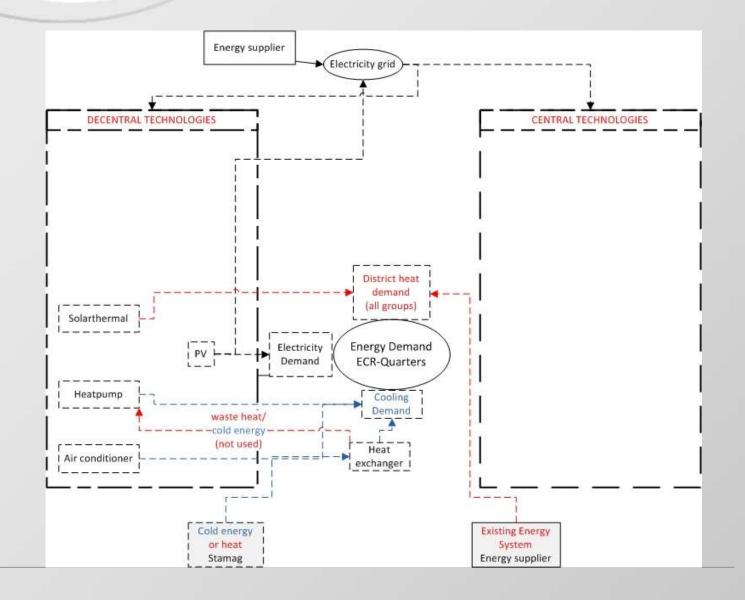

	ENERGY DEMAND by period and type in MWh			
Month	Heating water	Warm water	Electricity	Cooling
January	10.167	824	2.910	1
February	6.808	822	2.607	0
March	4.249	755	2.739	0
April	1.144	848	2.398	4
May	0	838	2.292	399
June	0	811	2.121	893
July	0	812	2.172	1.277
August	12	853	2.195	1.043
September	198	840	2.212	201
October	1.885	819	2.473	3
November	5.788	831	2.640	0
December	9.709	805	2.736	1
Year	39.960	9.856	29.495	3.823

Case study Graz/Reininghaus: a smart city quarter planning

Dividing into "sub-quarters"

Quarters are defined by:

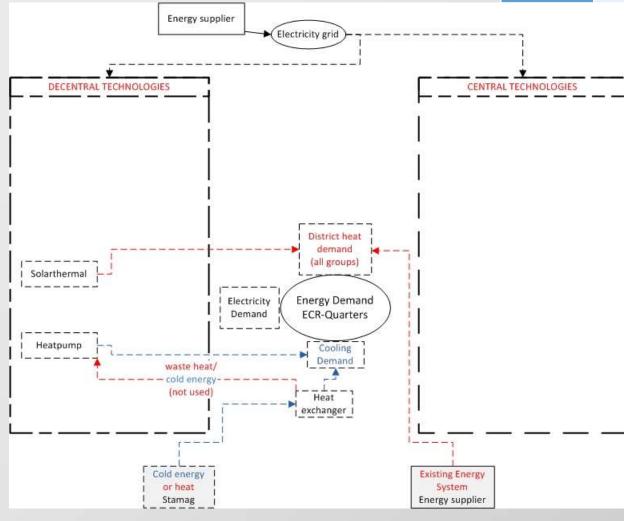
- Same energy need per square meter
- Same load profiles
- Averaged grid length
- Circled quarter: start of construction



Maximum Structure of technologies

(excluding grids) Gas grid Energy supplier Electricity grid **CENTRAL TECHNOLOGIES** DECENTRAL TECHNOLOGIES Gas Furnace -Combined Heat and Power (CHP) Combined Heat and Gas Furnace Power (CHP) **District** heat demand (all groups) Solarthermal **Energy Demand** Electricity i PV Demand **ECR-Quarters** Heatpump waste heat Cooling --- Heatpump (not used) Demand Air conditioner Heat waste heat exchanger | (not used) waste heat (partly in use) **Existing Energy** Cold energy Waste heat Waste heat System or heat Marienhütte Lindegas Stamag Energy supplier

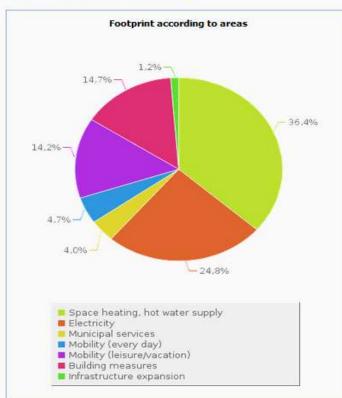
Optimal Structure



The interesting point: Scenarios for discourse with stakeholders

Scenario	Low energy house (LEH)	Passive house (PH)
Basic scenario all cost/prices actual, ressources by real availability, no further limitations	 Existing district heat cost: 35 €/MWh Supply with: Supply district heat (external) (54460 MWh) Cooling Stamag (decentral, use of total capacity) 3186 MWh Rest of cooling with elec. AC, total 258 MWh PV in quarters F, G, L, Q (gesamt ca. 275 MWh per period) Solar heat for warm water in quarters F, G, I, L, Q (gesamt 800 MWh) 	 Existing district heat cost: 35 €/MWh Supply with: Supply district heat (external) (19489 MWh) Cooling Stamag (decentral, use of total capacity) 4962 MWh Rest of cooling with elec. AC, total 905 MWh PV in quarters F, G, L, Q (gesamt ca. 275 MWh per period) Solar heat for warm water in quarters F, G, I, L, Q (gesamt 800 MWh)
Basic scenario + adjusted cost of district heat Rise of cost for district heat to the point where no existing district heat will be used	 Adjusted district heat cost: 46 €/MWh Supply with: Wate heat Marienhütte 78°C (use of total capacity) and gas (external) with external gas furnaces Cooling Stamag (decentral, use of total capacity) rest of cooling with AC PV in quarters F, G, L, Q (approx. 275 MWh per period) Solar heat in all quarters except K and M 	 Adjusted district heat cost: 47 €/MWh Supply with: Marie 78°C (use of total capacity), 25% gas (external) decentral, 6% Linde decentral Cooling Stamag (decentral, use of total capacity) rest of cooling with AC PV in quarters F, G, L, Q (approx. 275 MWh per period) Solar heat in all quarters except K and M

Optimum structure for circled quarter


	Gross floor area			
	Quarter 1		Quarter 4a	
Living	56 %	35,744 m²	61 %	21,891 m²
Office	24 %	15,237 m²	16 %	5,913 m²
Commerce	20 %	12,561 m²	23 %	8,348 m²

Ecological evaluation (SPI)

Ecological Footprint (SPI) 🕜 minimize

Result area	Result	Distribution
Space heating, hot water supply	3,322,745,643 m ²	<mark>36,4 %</mark>
Electricity	2,259,165,729 m ²	24.8 %
Municipal services	364,567,147 m ²	4.0 %
Mobility (every day)	430,872,442 m ²	4.7 %
Mobility (leisure/vacation)	1,294,302,062 m ²	14.2 %
Building measures	1,344,741,593 m ²	14.7 <mark>%</mark>
Infrastructure expansion	106,809,953 m ²	1.2 %
Total	9,123,204,568 m ²	100 %

show

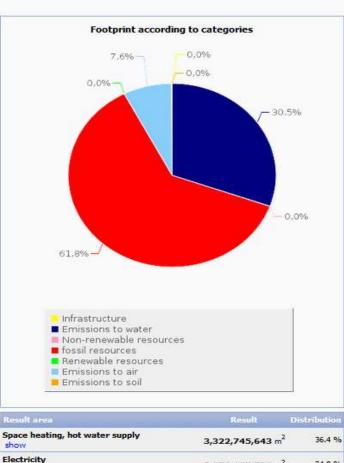
show

show

show

show

show

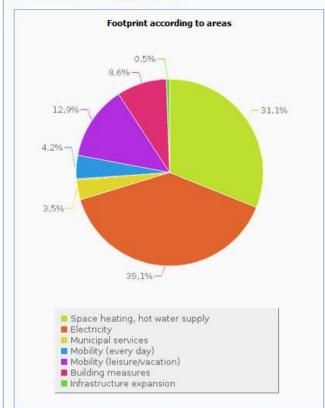

Municipal services

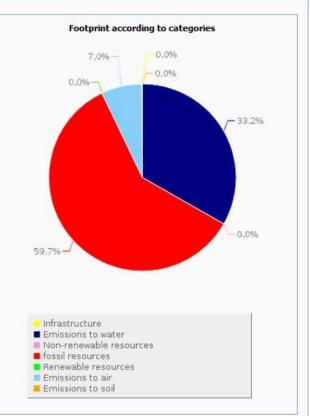
Mobility (every day)

Building measures

Mobility (leisure/vacation)

Infrastructure expansion





Ecological evaluation, circled quarter

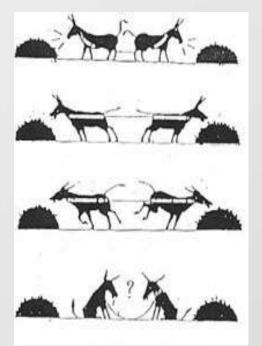
- Ecological Footprint (SPI) 🕧 minimize -

Result area	Result	Distribution
Space heating, hot water supply	618,640,693 m ²	31.1 %
Electricity	776,932,802 m ²	<mark>39.1 %</mark>
Municipal services	70,526,513 m ²	3.5 %
Mobility (every day)	83,329,826 m ²	4.2 %
Mobility (leisure/vacation)	255,846,517 m ²	12.9 %
Building measures	171,596,701 m ²	8.6 <mark>%</mark>
Infrastructure expansion	10,293,839 m ²	0.5 %
Total	1,987,166,891 m ²	100 %

Result area	Result	Distribution
Space heating, hot water supply show	618,640,693 m ²	31.1 %
Electricity show	776,932,802 m ²	<mark>39.1</mark> %
Municipal services show	70,526,513 m ²	3.5 %
Mobility (every day) show	83,329,826 m ²	4.2 %
Mobility (leisure/vacation) show	255,846,517 m ²	12.9 %
Building measures show	171,596,701 m ²	8.6 %
Infrastructure expansion show	10,293,839 m ²	0.5 %

The Challenge

We have many actors



How to make them see a bright common future?

What we find

- Decision aversity
- Technology infatuation
 - Pseudo-Activity"
- Strategic cluelessness

Industry: Why bother????

- New responsibilities
- Unfamiliar technologies
- Unfamiliar customers
- Long term investment

- New revenue chances
- Better resource utilisation
- Contribution to CSR profile
- Lower green-house gas emissions

Barriers and chances for smart cities

- Energy provision
- Grids and infrastructure
- Unfamiliar technologies
- Technology lock-in
- Long term investment

- Decreased dependency
- Better utilisation of existing infrastructure
- Lower green-house gas emissions
- Long term profits

What we need

Information

- Demand profiles/scenarios
- Scenarios that
 - Offer insight into systemic changes caused by resource costs
 - Offer insight into stability of solutions
 - Can mirror realistic building pathways

Implementation

- Agreement between different energy suppliers
- Innovative business models
- Early cooperation between architects, developers and energy planners
- Political framework for (long term) implementation

Thank you!

eseia Brussels Office

Avenue de Tervuren 84, 1040 Brussels

eseia Graz Office

Mandellstraße 11/II, 8010 Graz <u>office@eseia.eu</u>

eseia Homepage www.eseia.eu